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Abstract--- Damage recognition is important to asses the 

sstructural system and provide safety during their service life. 

Change in dynamic characteristics from the undamaged state 

indicates significant damage in the structures. The concept of 

change in natural frequency due to earthquake has been 

employed to identify the damage in the structure. A 2D 

reinforced concrete building frame is analyzed for different 

levels of damage using structural engineering software 

STAAD.Pro V8i. Further, an artificial neural network using 

backpropagation algorithm is trained to develop the 

correlation between the damage in the frame with its known 

dynamic characteristics. Efficiency of artificial neural network 

to predict the damage for untrained parameters is studied. 

Keywords--- Artificial Neural Network, Damage Index, 

Dynamic Characteristics, Finite Element Software, Stiffness. 

I. INTRODUCTION 

IVIL Engineering structures are more susceptible to 

damage and deterioration during their service life and the 

need of damage detection is widely increasing for the 

maintenance of existing civil infrastructure. The damage to a 

building structure may be due to natural hazards such as 

earthquakes and windstorms, and due to long-duration ageing 

under hostile environment. For the purpose of providing 

seismic safety, it is necessary to monitor the damage for its 

existence, location and extent. Usually damage can be 

detected by visual inspection which is the most common type. 

But, this method doesn‟t hold good for large and complex 

structures due to the problem of accessibility and 

imprecise.Hence from last few decades, a research is made to 

detect the damage in structures by varying the dynamic 

response of a structure.  

An attempt has been made to recognize and localize the 

damage using the changes in curvature mode shapes, natural 

frequencies, changes in strain energy, modal stiffness, and 

modal displacement.  

The dynamics parameters such as natural frequencies, and 

mode shapes have been widely used for damage detection, as 

they are functions of structural properties. This is based on 

that any degradation of the structural properties results in 

changes of the modal parameters. Hence, Damage is defined 

as reduction in stiffness of elements making the structure weak 

which cause undesirable displacements or vibrations to the 

structure leading to sudden and catastrophic failure. Variation 

in natural frequency from undamaged state indicates the 

damage in the structure. 
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Cawley and Adams [1]proposed the first model by varying 

natural frequencies and also adopted finite element model, to 

recognize the damage in the structures. They have shown that 

how measurements made at a single point in the structure can 

be used to recognize, locate and estimate the damage. Hearn 

and Testa following the works of Cawley and Adams, they 

have reported the non-destructive inspection of structures by 

modal analysis of vibration response.Z.Y. Shi et.alstudied on 

locating damage in the structure based on modal strain energy 

method.From few years an attempt has been made to employ 

artificial neural network  in Structural Engineering for 

recognizing damage in structures. Artificial Neural Network 

resembles human brain. It consists of interconnected neurons 

(processing units) which exchange messages among 

themselves. ANNs are used when the relationship between 

input and output is complicated or when the use of another 

technique requires large computational time. In this paper 

MATLAB Neural Network Toolbox is used to develop and 

train the neural network, efficiency of neural network to 

predict the values which are not trained is verified. 

A. Recognition of Structural Damage  

Occurrence of damage in the structure affects its 

functionality and decreases the load carrying capacity of 

structures hence making it unsafe. Therefore it is necessary to 

monitor the structure regularly to detect the damage in the 

structure. If minor or moderate damages are detected they can 

be retrofitted or damaged structures are replaced and the 

collapse of the structure can be prevented otherwise the 

structure leads to catastrophic failure. It is important to 

consider the cause of deterioration, if ignored the deterioration 

repeats. 

Four stages of damage identification classification are as 

follows: 

Level 1: Identification that the damage is there in the 

structure. 

Level 2: level 1 plus identification of the geometric 

location of the damage 

Level 3: level 2 plus computation of the severity of the 

damage 

Level 4: level 3 plus estimating the remaining service life 

of the structure 

B. Damage Index for Different Damage Stages 

Damage is minor if the damage indexis in the range of 0 to 

0.15, damage is moderate and repairable if the damage index 

is between 0.15 to 0.3, damage is severe and irrepairable if the 

damage index is between 0.3 to 0.8, damage leads to collapse 

of the structure if damage index is more than 0.8. 
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C. Neural Network Theory 

Two primary elements that make a neural network are: 

neurons and interconnection weights between the neurons. 

These determine the nature and strength of the connection 

between the neurons. A neural network consists of layers and 

each layer contains neurons (processing units) that act parallel 

within the layer. To create the model network must be trained 

with the training data. Input data in the form of vector or 

matrix is transferred through the layers. Each data value in the 

input vector is multiplied by the weights associated with each 

neuron in a layer and the results are summed at each neuron 

input creating a new vector with the size equal to the number 

of neurons in that layer. Later, the transfer function at each 

neuron converts its input, which is a sum of weighted input 

and bias, into a neuron layer output. In hidden layers, neuron 

layer output vector is used as input to the next layer. Then, the 

output vector represents the final output of the entire neural 

network. 

The neural network uses two types of learning methods. 

One is supervised training and the other is unsupervised 

training. Supervised training is employed in back-propagation 

neural network and unsupervised is employed in 

Counterpropagation neural network (feed-forward artificial 

neural network). 

1) Back-Propagation Neural Network 

In this type of training, both inputs and outputs are provided. It 

has input layer, output layer and hidden layers that must be 

defined by the developer. The network processes the inputs 

and then compares the resulting outputs with the desired 

outputs. Errors are then propagated back through the system, 

making the system to adjust the weights that control the 

network. This process occurs again and again till the weights 

are continually adjusted.  

2) Counterpropagation Neural Network 

This network is referred as self-organization. This network 

consists of three layers: An input layer, a competing layer that 

functions as a clustering device, an interpolation layer. The 

network is provided with inputs but not with desired outputs.  

The system itself must decide what features must be used to 

group the input data. In this network for any pair of input, only 

the weights of the winning processing elements in the 

competing layer are adjusted. Hence, most of the computing 

time is saved as compared with back-propagation network. 

With training, the neural network reaches a stabilizing stage, 

and the solution is obtained using an averaging scheme with 

the interpolation layer. The advantage of this type of neural 

network is that it can work with incomplete data and data 

containing system electrical noise.  

D. Methods of Damage Detection by Direct Use of Modal 

Parameters 

1) Change in Natural Frequencies 

Change in natural frequency is the general method of 

damage detection. If damage exists in the structure, stiffness 

reduces and corresponding decrease in natural frequency can 

be observed. Natural frequency is the function of mass and 

stiffness. It varies directly with stiffness and inversely with 

mass. 

2) Change in Damping 

Damping changes and dissipative effects due to the friction 

between crack surfaces is another interesting indicator for 

damage detection. The undetectable cracks by using changes 

in natural frequencies can cause important changes in the 

damping factor allowing damage detection is the advantage of 

using change in damping. Hence, damping factor increases 

with increase in crack severity. 

3) Mode Shapes 

Mode shapes are the vibrational deformation. Mode shapes 

can give more information than natural frequency and are 

more sensitive to system damage. Hence, extent and location 

of damage are the parameters  affecting the change in mode 

shapes and the spatial description in magnitude change varies 

fromone to another with respect to each node due to the crack 

location. 

4) Modal Assurance Criterion  

The Modal Assurance Criterion is related only to the mode 

shapes.It relates test and analytical mode shapes.A separate 

frequency comparison must be used in combination with the 

modal assurance criterion values to determine the correlated 

mode pairs because MAC considers only the mode shapes.  

E. Objectives of the Project 

This paper presents response spectrum analysis of a rcc 

four storey building frame to obtain base shear and frequency 

using STAAD.Pro software and the results from STAAD.Pro 

software are used to train the artificial neural network. 

Damage in frame is determined by reducing the flexural 

rigidity of the frame and the efficiency of the artificial neural 

network is checked. 

II. METHODOLOGY 

A. Damage Modeling 

The damage is induced in the structure based on the 

concept of reducing the stiffness. Damage index is the basis 

for predicting the damage state hence, it is calculated as 

DI = 1-(Kfinal/Kinitial) 

Where Kinitial= building stiffness without damage, 

Kfinal= stiffness of the building with damaged, K= (base 

shear/storey drift) 

Example model considered is a four storied building frame 

and description is as follows: 

Table 1: Frame Details 

Floor number Load Column size Beam size 

First floor W1=17kN/m C1=0.28X0.28 0.3X0.3 

Second floor W2=17kN/m C2=0.28X0.28 0.3X0.3 

Third floor W3=17kN/m C3=0.28X0.28 0.3X0.3 

Fourth floor W3=15kN/m C4=0.23X0.23 0.3X0.3 

Modulus of rigidity, E=2.17 x 10
7
kN/m

3 
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The frame is subjected to response spectrum analysis using 

STAAD.Pro for zone-4. 18 sets of results are obtained from 

STAAD.Pro by decreasing the modulus of elasticity of the 

frame. In the first case the frame is analysed without any 

damage and in the second case 5% damage is induced in the 

first storey by reducing the value of „E‟ and no damage to 

other stories and in the third case 10% damage in first storey 

and 5% damage in the second storey is induced whereas other 

stories are undamaged. This process continues till 85% 

damage is induced in the first storey. Then the stiffness in 

damaged state and damage index is calculated for each storey. 

From the damage index the extent of damage in the structure 

is determined.  
 

Figure 1: Four Storey Plane Frame

Table 2: Results from STAAD.Pro Software (case-1 to case-8)

Modulus of 

rigidity value 

Mode shape 

coefficient 

Storey 

drift 
Initial stiffness Final stiffness Damage index 

Reduction in 

modulus of 

rigidity 

Frequency 

SET-1               

2.17E+07 0.3153 15.537 2.566       0.855 

2.17E+07 0.6068 28.178 1.415         

2.17E+07 0.8255 36.615 1.089         

2.17E+07 0.9999 42.717 0.9336         

SET-2               

2.06E+07 0.3253 16.327 2.566 2.442 0.048 5% 0.843 

2.17E+07 0.6155 29.186 1.415 1.366 0.034     

2.17E+07 0.8298 37.649 1.089 1.059 0.0274     

2.17E+07 0.9999 43.759 0.9336 0.9113 0.0238     

SET-3               

1.95E+07 0.3319 17.245 2.566 2.312 0.09 10% 0.825 

2.06E+07 0.6264 30.779 1.415 1.295 0.084 5%   

2.17E+07 0.8363 39.409 1.089 1.012 0.0709     

2.17E+07 0.9999 45.543 0.9336 0.875 0.062     

SET-4               

1.84E+07 0.3351 18.263 2.566 2.184 0.149 15% 0.804 

1.95E+07 0.6317 32.569 1.415 1.224 0.134 10%   

2.06E+07 0.8421 41.66 1.089 0.957 0.121 5%   

2.17E+07 0.9999 47.904 0.9336 0.832 0.1     

SET-5               

1.74E+07 0.3351 19.301 2.566 2.066 0.195 20% 0.782 

1.84E+07 0.6321 34.44 1.415 1.157 0.181 15%   

1.95E+07 0.8425 44.05 1.089 0.905 0.168 10%   

2.06E+07 0.9999 50.633 0.9336 0.787 0.156 5%   

SET-6               

1.63E+07 0.3564 20.837 2.566 1.913 0.254 25% 0.761 

1.74E+07 0.67 37.773 1.415 1.055 0.253 20%   

1.84E+07 0.8884 48.28 1.089 0.826 0.241 15%   

1.95E+07 1 53.728 0.9336 0.742 0.204 10%   

SET-7               

1.52E+07 0.3386 22.056 2.566 1.808 0.295 30% 0.734 

1.63E+07 0.6358 39.228 1.415 1.016 0.281 25%   

1.74E+07 0.8444 50.472 1.089 0.79 0.274 20%   

1.84E+07 0.9999 58.591 0.9336 0.68 0.27 15%   

SET-8               

1.41E+07 0.3406 23.753 2.566 1.678 0.345 35% 0.708 

1.52E+07 0.6383 42.151 1.415 0.946 0.331 30%   

1.63E+07 0.8462 53.686 1.089 0.742 0.318 25%   

1.74E+07 0.9999 61.508 0.9336 0.648 0.305 20%   
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Table 3: Results from STAAD.Pro Software (case-9 to case-16) 

Modulus of 

rigidity value 

Mode shape 

coefficient 

Storey 

drift 
Initial stiffness Final stiffness Damage index 

Reduction in modulus of 

rigidity value 
Frequency 

SET-9               

1.03E+07 0.3426 25.74 2.566 1.549 0.396 40% 0.682 

1.41E+07 0.6407 45.596 1.415 0.874 0.382 35%   

1.52E+07 0.8476 57.985 1.089 0.687 0.368 30%   

1.63E+07 0.9999 66.348 0.9336 0.601 0.356 25%   

SET-10               

1.19E+07 0.3449 28.092 2.566 1.419 0.446 45% 0.654 

1.30E+07 0.6434 49.662 1.415 0.803 0.432 40%   

1.41E+07 0.8493 63.043 1.089 0.632 0.419 35%   

1.52E+07 0.9999 72.028 0.9336 0.553 0.406 30%   

SET-11               

1.09E+07 0.3459 30.651 2.566 1.301 0.493 50% 0.627 

1.19E+07 0.6451 54.187 1.415 0.735 0.48 45%   

1.30E+07 0.8506 68.728 1.089 0.58 0.467 40%   

1.41E+07 0.9999 78.434 0.9336 0.508 0.455 35%   

SET-12               

9.76E+06 0.3505 34.161 2.566 1.167 0.545 55% 0.596 

1.09E+07 0.6492 60.035 1.415 0.664 0.53 50%   

1.19E+07 0.8529 75.925 1.089 0.525 0.52 45%   

1.30E+07 0.9999 86.479 0.9336 0.461 0.5 40%   

SET-13               

8.68E+06 0.3544 38.393 2.566 1.038 0.595 60% 0.564 

9.76E+06 0.6545 67.312 1.415 0.592 0.581 55%   

1.09E+07 0.8558 84.807 1.089 0.47 0.568 50%   

1.19E+07 0.9999 96.351 0.9336 0.413 0.557 45%   

SET-14               

7.59E+06 0.3593 43.822 2.566 0.91 0.645 65% 0.531 

8.68E+06 0.6601 76.502 1.415 0.521 0.631 60%   

9.76E+06 0.8597 96.09 1.089 0.415 0.619 55%   

1.09E+07 0.9999 108.8 0.9336 0.366 0.607 50%   

SET-15               

6.51E+06 0.3654 51.0491 2.566 0.781 0.695 70% 0.494 

7.59E+06 0.6668 88.624 1.415 0.449 0.682 65%   

8.68E+06 0.8634 110.81 1.089 0.359 0.669 60%   

9.76E+06 0.9999 125.059 0.9336 0.318 0.658 55%   

SET-16               

5.42E+06 0.3738 61.147 2.566 0.652 0.745 75% 0.455 

6.51E+06 0.676 105.366 1.415 0.378 0.732 70%   

7.59E+06 0.8687 130.957 1.089 0.304 0.72 65%   

8.68E+06 0.9999 147.116 0.9336 0.271 0.709 60%   

Table 4: Results from STAAD.Pro Software (case -17 to case18)

Modulus of 

rigidity value 

Mode shape 

coefficient 

Storey 

drift 
Initial stiffness Final stiffness Damage index 

Reduction in modulus 

of rigidity value 
Frequency 

SET-17               

4.34E+06 0.3855 76.2523 2.566 0.523 0.796 80% 0.412 

5.42E+06 0.6885 130.0184 1.415 0.306 0.783 75%   

6.51E+06 0.8758 160.274 1.089 0.248 0.771 70%   

7.59E+06 0.9999 178.952 0.9336 0.222 0.76 65%   

SET-18               

3.25E+06 0.4034 101.318 2.566 0.393 0.846 85% 0.362 

4.34E+06 0.7067 170.009 1.415 0.234 0.834 80%   

5.42E+06 0.8856 207.077 1.089 0.192 0.823 75%   

6.51E+06 0.9999 229.241 0.9336 0.173 0.813 70%   

 



Bonfring International Journal of Man Machine Interface, Vol. 4, Special Issue, July 2016   149 
 

ISSN 2277-5064 | © 2016 Bonfring 

 

Figure 2: Percentage Reduction in EI vs Damage Index for 

First Storey 

 

Figure 3: Percentage Reduction in EI vs Damage Index for 

Second Storey 

 

Figure 4: Percentage Reduction in EI vs Damage Index for 

Third Storey 

 

Figure 5: Percentage Reduction in EI vs Damage Index for 

Fourth Storey 

B. Artificial Neural Network Modeling 

Outputs from STAAD.Pro is used as inputs values and 

target values for artificial neural network. It is provided with 

three input parameters and one output parameter. Inputs are: 

storey height, mode shape coefficients, frequency. Output is 

damage index. Neural network is trained by back propogation 

method.  

Artificial neural network is efficient when it can give the 

values for which it is not trained. Hence, some of the patterns 

are skipped ie., pattern-4,8,12,16 from training and the 

efficiency of the network is determined by giving same inputs 

and checking the output. A graph is plotted between the 

calculated damage indices and predicted damage indices. The 

calculated and predicted values are almost same and hence 

artificial neural network is efficient enough to predict the 

damage in the structures. Graphs are as below 

C. Comparision Between Calculated and Predicted Values 

 

Figure 6: Damage Index vs Normalized Storey Height for 

Case 4 
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Figure 7: Damage Index vs Normalized Storey Height for 

Case 8 

 

Figure 8: Damage Index vs Normalized Storey Height for 

Case 12 

 

Figure 9: Damage Index vs Normalized Storey Height for 

Case 16 

III. DISCUSSION 

For pattern 4 from figure 6 the percentage variation 

between the calculated damage index and predicted damage 

index for first storey is 2.8% and for second storey is 0.6% 

and for third storey is 2.5% and for fourth storey is  9%.  

Similarly percentage variation for 8
th

, 12
th

 and 16
th

 is 

calculated and most of the variations are within 6% and are 

within the limits ie., 10%. 

IV. CONCLUSION 

Following conclusions are arrived from the present study 

1. Frequency decreases as damage index increases. 

2. Damage is minor till 15% reduction in flexural 

rigidity. This type of damage is neglisible and do not 

cause much disturbance to the buildings. 

3. Damage is moderate and repairable from  20% to 30% 

reduction in flexural rigidity. This type of damage can 

be repaired by retrofitting. 

4. Damage is severe and irrepairable from 35% to 80%. 

5. Frame collapses when the flexural rigidity reduces to 

85%. 

6. The efficiency of calculated and predicted value is less 

than 6% and hence within the limits. 

7. Efficiency of neural network increases with increase 

in the number of patterns. 

V. SCOPE FOR FUTURE WORK 

This work can be extended for steel frames. Comparision 

of efficiency can be made between artificial neural network 

and genetic algorithm. 
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