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Microcalcification Detection by Morphology, 
Singularities of Contourlet Transform and Neural 

Network 
Rekha Lakshmanan and Vinu Thomas  

Abstract--- The proposed method presents a new 
classification approach to microcalcification detection in 
mammograms using morphology, Contourlet Transform and 
Artificial Neural Network. Early detection of breast cancer is 
possible by enhancing microcalcification features obtained 
using morphology and singularities of Contourlet Transform. 
The significant edge information indicating the relevant 
features in various decomposition levels are preserved while 
removing the artifacts. These features are utilized to detect 
microcalcifications by classification employing the Back 
Propagation Neural Network. Target to background contrast 
ratio, Contrast and Peak Signal to Noise ratio are considered 
for performance evaluation of the enhancement algorithm. 
The accuracy of the classification algorithm is 95%. The mini-
MIAS mammographic database is employed for testing the 
accuracy of the proposed method and the results are 
promising. 

Keywords--- Breast Cancer, Back Propagation Neural 
Network, Contourlet Transform, Morphology 

I. INTRODUCTION 
REAST cancer is one of the leading causes of cancer 
death among women. According to the statistics in 2011-

12, the expected mortality rate due to breast cancer is about 
39,520 [1], even though there is decrease in death rates since 
1990. According to the Indian Council of Medical Research 
(ICMR), breast cancer becomes the leading cause of cancer-
related mortality among women and it will affect nearly 0.25 
million women in India by 2015. Mammography as a 
screening tool is one of the best proven technique for early 
breast cancer detection. Mammographic image analysis is a 
complicated and difficult task which requires opinion of 
highly trained radiologists. Detection of MiCro-Calcification 
(MCC), a possible symptom of breast cancer is a complex task 
because of the inhomogeneous background and the high noise 
level in the images due to emulsion artifacts. 
Microcalcifications are tiny, granular, linear, or irregular 
deposits of Calcium Phosphate Hydroxide which appear as 
bright white spots with size ranging from 0.1–1.0 mm and an 
average diameter about 0.3[2].A high contrast is essential in 
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differentiating minute MCC structures with breast tissues. 
Computer aided image processing techniques assists 
radiologists in analyzing suspicious areas and to provide a 
second opinion of diagnosis. The multi scale and 
multidirectional analysis of the proposed method can 
effectively enhance sharp variation points indicating the 
presence of MCC by removing various artifacts thereby 
increasing the reduction of false positives.        

II. LITERATURE SURVEY 
Recently, wavelet-based enhancement approaches [3][4] 

[5][6] have been employed to acquire better performances. 
Natural images have higher geometrical characteristics [7], 
and the discontinuity is always along the smooth curve. The 
sharp edges and singularities in natural images cannot be 
efficiently presented by a separable two dimensional wavelet 
transform even though it provides an optimal representation 
for one dimensional piece-wise smooth signals. To overcome 
the drawbacks of Wavelet Transform, Contourlet transform by 
Minh Do et al [8], an efficient representation is employed to 
capture the smooth contours that are the dominant feature in 
natural images. The multi resolution property of Contourlet 
transform is proficient in separating small objects such as 
microcalcifications from large objects such as background 
structures. Manzano et.al [9], proposed an image enhancement 
technique using an orientation space analysis based on a 
contourlet transform. Xinsheng Zhang and Hua Xie [10] 
utilized Contourlet Transform , Generalized Gaussian Mixture 
Model (GGMM)  and Bayesian classifier to enhance the 
suspicious features. Hu et.al. suggested a detection 
Algorithm[11] of Suspicious Lesions by Adaptive 
Thresholding Based on Multi resolution Analysis along with 
morphological filter to remove the noise and to enhance the 
gray-level feature and shape feature.Wiselin Jiji.G [12] 
utilized features from wavelet decomposition and Gabor filter 
for detecting micro calcification using back propagation neural 
network. Manimegalai.P[13] developed a system extracting 
statistical features by wavelet decomposition for classifying 
breast tissue using Back propagation Neural Network 
(BPNN). Leena Jasmine [14] used a new approach for micro 
calcification detection using back propagation neural network 
and non subsampled Contourlet transform which yielded a 
significant true detection rate approximately 87%.  

III. METHODOLOGY 
The proposed algorithm makes use of the multiscale and 

directionality properties of the Contourlet Transform to 
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The orientation characteristics of combined impulse 
response is decided by the directional filters used and the 
specified number of directional decomposition levels. The 
major difficulties in identifying MCC in mammograms are 
due to very high frequency noise and background with low 
frequency components. To avoid these difficulties, the 
proposed method utilizes singularities of the multidirectional, 
multiresolution Contourlet coefficients. The features of an 
edge are described differently in different directions and at 
different resolution scales as decided by the level of the 
Laplacian Pyramid at which the DFB decomposition is 
performed. Coefficients at various scales are strongly 
interdependent [18]. Po and Do describe the relationship 
between image features that appear in the contourlet transform 
at different scales using the parent, child, cousin and 
neighbour nomenclature. Clinically important 
microcalcification structures form edge features which are 
present at more than one level of resolutions in the contourlet 
decomposition whereas edges due to image artifacts such as 
those due to Poisson noise are very fine structures that are 
significant at only the finest resolutions. The parent-child tree 
is constructed for modulus maxima at each directional 
subband at each level, in the direction specified by the impulse 
response of that band. The tree retains only those coefficients 
that propagate to the coarser levels of the contourlet 
decompositions, while discarding those that exist only at the 
finer resolutions.  The contourlet coefficients on both sides of 
and including the selected modulus maxima coefficients are 
boosted by a scale factor. An inverse contourlet transform 
which replaces the coarse sub-image by a zero array will yield 
the locations of possible microcalcifications. Three levels of 
Laplacian Pyramids, with a four level Directional Filter Bank 
at each Laplacian Pyramid level, were employed in the 
proposed method for decomposing the mammogram images in 
the mini-MIAS database. 

3.2 Top-Hat Transformation 
Enhancement approaches using Morphological operations 

[19] is of great importance as it is a powerful tool in extracting 
important information in an image. The two basic operations 
in morphology are dilation and erosion. Dilation results in 
growth or object or thickening while erosion shrinks objects 
based on the structuring element.  

{ ( ) } (1)                                                         | ISzSI z ⊆=Θ  
where I is the image, S is the structuring element and z is the 
outcome when S is subset or equal to I. 

Dilation is represented by 

{ [ ( ) ] }IISzSI z ⊆∩=⊕ |                                          (2) 

By combining erosion and dilation, the important 
morphological filter operations opening and closing are 
formed. Opening and closing are defined as follows. 

( ) SSISI ⊕Θ=o                                      (3) 

( ) SSISI Θ⊕=•                                                            (4) 

Opening operation helps to keep the background (i.e., 
features that cannot hold the structuring element) which is not 
required for the proposed method. So a Top-Hat operation 
[20] is performed to remove the background in order to get the 
required microcalcification features. Top-Hat representation is 
given by 

)( SIITH o−=                                (5) 

In Top-Hat operation, the foreground objects can be 
highlighted by suppressing the dark background. Since the low 
contrast MCCs in mammograms appear as circularly bright 
spots, and a calcification has approximately a size of 20 pixels 
on each mammogram [21], the proposed method considers a 
structuring element larger than 20 pixels. So the detection of 
microcalcification is possible through morphological 
approach. The resulting image is converted to a binary image 
by thresholding it with the value of 8*σ (empirically 
obtained), where σ is the standard deviation of the result 
image.  
3.3 Proposed Method 

The proposed method combines the approach based on the 
modulus maxima of the contourlet transform and the 
morphological approach by a logical AND operation to detect 
clinically important microcalcification structures while 
removing noise due to emulsion artifacts. The low pass filters 
employed at the LP stage are derived from the PKVA filters 
[22] and the fan filters at the DFB stage are derived from the 
BIOR 9, 7 filters [23]. The pixels in the mammogram image 
corresponding to the location of logic 1 in the image obtained 
from the previous step are boosted to emphasize the locations 
of the microcalcifications. To develop a CAD technique that 
classifies the mammographic images into normal and those 
with microcalcifications, a Back Propagation Neural Network 
(BPNN) [24] is employed. For the training set, the ground 
truth that accompanies the MIAS database [25] is employed. 
256 x 256 snippets of the mammogram images are employed 
for training the Back Propagation Neural Network. Five 
hundred such blocks were employed in the training set. In 
order to reduce the dimension of the feature vector, the 
enhanced image is divided into blocks of size 32 x 32. The 
energy of each block of the denoised and quality enhanced 
image is computed by squaring every element in the block and 
adding. In order to simplify the computation, energy value of 
each block is divided by the maximum energy value of all 
blocks to get normalized energy values which are less than or 
equal to one. The lexicographically ordered 64 x 1 energy 
vector is computed for each mammogram snippet and is 
considered as the feature vector for the classification process. 
The BPNN used for the classification thus employs 64 input 
neurons and one output neuron. Five hidden layer neurons in a 
single hidden layer were employed for the BPNN. For the test 
data set 256 x 256 snippets of mammograms similarly 
enhanced as before, are converted to equivalent 64 x 1 feature 
vectors. 
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3.4 Algorithm 
1. Morphological Operation: Top-Hat operation of the 

original mammogram image is performed (a 256 x 
256 snippet is taken here) to remove the background 
in order to get the required microcalcification features. 

 
2. Thresholding: The resultant image is thresholded 

using 8*σ, where σ is the standard deviation of the 
resultant image. 

3. Extraction: Contourlet Transform of 
original image is computed for three scales with a four 
level directional decomposition at each scale. 

4. Singularity detection: M
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subband. Apply Pyramidal 

on on the selected coefficients in the 
directional subbands. 

8. Thresholding: Threshold the resultant image using the 
value 8*σ, where σ is the standard deviat

9. D ing: Apply a logical AND operation 
with the results obtained from step 2 and step 8 to 
locate the MCCs.  

10. cement: The pixels in the mammogram 
image corresponding to the location of logic 1 in the 
image obtained from the previous step

 locations of the microcalcifications. 
11. Feature Reduction: Divide the enhanced image into 

blocks of size 32 x 32 to reduce the size of the feature 
vector. 

12. Feature Vector generation
alize it to generate the 64 x 1 

feature vector. 
13. Classification: Train the BPNN
Each  element (256 x 256 mammogram snippet) 

is similarly converted to a 64 x 1 energy vector as before, prior 
to presentation to the BPNN for classificatio

IV. DA

The proposed method was tested on mini-MIAS database 
[25] of digital mammograms by UK research group. The 
database consists of 322 images of size 1024 x

.  Am  them  im
. Among these 25 images, 

diagnosed as malignant and 12 as benign.  

V. PERFORMANCE MEASURES 
Various performance measures such as Contrast, Peak 

Signal to Noise Ratio and Target to Background Contrast 
ratio[26] were considered for measuring th

ontrast, C of a region is defined by 

( )
( )bf

bfC
+
−

=                                              (6) 

where f is the mean gray-level value of the foreground and b is 
the mean gray-level value of the background. PSNR is defined 
as 

( )
σ

b                                               (7) pPSNR −
=  

where p is the maximum gray-level value and σ  is the 
standard deviation of the background. 

In order to evaluate the effect of visual appearance of our 
method, we co e Target to
using Variance (TBC).The expression for computing TBC is  

nsider th  Background Contrast ratio 

σ
δμ=cTB                                                (8) 

where μδ  is the difference between the ratios of the mean gray 
levels in the foreground and background and is the ratio o
standard deviation of enhanced and original image. 
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MIAS database, for the major intermediate steps of the 
proposed algorithm.  The enhanced results for the Mdb241, 
Mdb211, Mdb245 and Mdb249 images from the mini MIAS 
database are shown in figure 5. Mdb249 is a mammographic 
image having dense glandular background tissue with well-
defined malignant microcalcifications. Mdb211 is a fatty 
glandular mammogram with a difficult to detect 
microcalcification cluster. Mdb245 represents a 
mammographic image with widely distributed calcifications. 
Mdb241 is a mammographic image having easy to detect 
microcalcifications. The results in figure 5 reveal that the 
proposed technique enhances the appearance of the 
microcalcifications against the surrounding dense tissue which 
may otherwise obscure these structures. 

 
Figure 5: The Enhancement and Segmented Results for the 
Microcalcification Features on Selected ROI’s : (a)(d)(g)(j) 

Original ROI of mdb241, mdb249, mdb245,mdb211, 
(b)(e)(h)(k) Enhancement by Proposed Method (c)(f)(i)(l) 
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Figure 6: Comparison of Performance Measures,(a)PSNR, 
(b)Contrast, (c) TBc of Original and Enhanced Image 
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expert radiologists provided in the database. Proposed method 
yields 95% true positive rate and 96.71% true negative rate 
with 96.70% accuracy. Since the false positive rate is very less 
(3.29%), the proposed method is very helpful reducing 
unnecessary biopsies.  
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